Computer Science Homework Help
San Jose State University Machine Learning for Cyber Threats Essay
- Introduction————–2 pages
- Theoretical Orientation for the Study——2 Pages
- Summary—————1 -Page
Mention the topic name(Machine learning for cyber threats, include the data bases, sources references found from ProQuest, ieeexplore, sciencedirect etc. (Based on provided total 15 references) in the form of sentences.
Al-Mhiqani, M. N., Ahmad, R., Zainal Abidin, Z., Yassin, W., Hassan, A., Abdulkareem, K. H., Ali, N. S., & Yunos, Z. (2020). A Review of Insider Threat Detection: Classification, Machine Learning Techniques, Datasets, Open Challenges, and Recommendations. Applied Sciences, 10(15), 5208–. https://doi.org/10.3390/app10155208
Aravindan, C., Frederick, T., Hemamalini, V., & Cathirine, M. V. J. (2020). An Extensive Research on Cyber Threats using Learning Algorithm. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 1–8. https://doi.org/10.1109/ic-ETITE47903.2020.337
Bilen, A., & Özer, A. B. (2021). Cyber-attack method and perpetrator prediction using machine learning algorithms. PeerJ. Computer Science, 7, e475–e475. https://doi.org/10.7717/peerj-cs.475
Ebrahimi, M., Nunamaker, J. F., & Chen, H. (2020). Semi-Supervised Cyber Threat Identification in Dark Net Markets: A Transductive and Deep Learning Approach. Journal of Management Information Systems, 37(3), 694–722. https://doi.org/10.1080/07421222.2020.1790186
Estévez-Pereira, J. J., Fernández, D., & Novoa, F. J. (2020). Network Anomaly Detection Using Machine Learning Techniques. Proceedings, 54(1), 8–. https://doi.org/10.3390/proceedings2020054008
Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani, H., Watters, P., & Ng, A. (2020). Cybersecurity data science: an overview from machine learning perspective. Journal of Big Data, 7(1), 1–29. https://doi.org/10.1186/s40537-020-00318-5
Zhang, S., Xie, X., & Xu, Y. (2020). A Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity. IEEE Access, 8, 128250–128263. https://doi.org/10.1109/ACCESS.2020.3008433
Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021). Network
intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1). https://doi.org/10.1002/ett.4150
Aloseel, A., Al-Rubaye, S., Zolotas, A., & Shaw, C. (2021). Attack-Detection Architectural
Framework Based on Anomalous Patterns of System Performance and Resource
Utilization-Part II. IEEE Access, 9, 1–1. https://doi.org/10.1109/ACCESS.2021.3088411
Bagui Sikha, & Li Kunqi. (2021). Resampling imbalanced data for network intrusion detection
datasets. Journal of Big Data, 8(1), 1–41. https://doi.org/10.1186/s40537-020-00390-x
Chiche, A., & Meshesha, M. (2021). Towards a Scalable and Adaptive Learning Approach for
Network Intrusion Detection. Journal of Computer Networks and Communications, 2021. https://doi.org/10.1155/2021/8845540
Di Mauro, M., Galatro, G., Fortino, G., & Liotta, A. (2021). Supervised feature selection
techniques in network intrusion detection: A critical review. Engineering Applications of Artificial Intelligence, 101, 104216–. https://doi.org/10.1016/j.engappai.2021.104216
Djenna, A., Harous, S., & Saidouni, D. E. (2021). Internet of Things Meet Internet of Threats:
New Concern Cyber Security Issues of Critical Cyber Infrastructure. Applied Sciences, 11(10), 4580–. https://doi.org/10.3390/app11104580
Dixit, P., Kohli, R., Acevedo-Duque, A., Gonzalez-Diaz, R. R., & Jhaveri, R. H. (2021).
Comparing and Analyzing Applications of Intelligent Techniques in Cyberattack Detection. Security and Communication Networks, 2021, 1–23. https://doi.org/10.1155/2021/5561816
Gopal, S. ., Poongodi, C., Nanthiya, D., Snega Priya, R., Saran, G., & Sathya Priya, M. (2021).
Mitigating DoS attacks in IoT using Supervised and Unsupervised Algorithms – A Survey. IOP Conference Series. Materials Science and Engineering, 1055(1), 12072–. https://doi.org/10.1088/1757-899X/1055/1/012072